Acquired resistance to BRAF inhibition in BRAFV600E mutant gliomas
نویسندگان
چکیده
Activating mutation of BRAF is a common finding in pediatric gliomas. As many as 14% of high grade and up to 66% of certain subtypes of low grade pediatric glioma have the BRAFV600E mutation. Small molecule inhibitors that selectively target BRAFV600E are FDA approved for melanoma and have shown significant efficacy in treating BRAFV600E glioma in pre-clinical trials. Despite showing initial anti-tumor activity, acquired drug resistance significantly limits the benefit from being treated with BRAFV600E inhibitors. Here, we have identified molecular responses to BRAFV600E inhibitor treatment in human glioma models that have substantial clinical implications. Specifically, we show that BRAFV600E inhibitor resistant cells upregulate pro-survival mediators such as Wnt, and additionally increase receptor tyrosine kinase activity, including EGFR and Axl, promoting resistance to BRAFV600E inhibition. Our results suggest strategies to circumvent acquired resistance to BRAFV600E inhibitor therapy, and thereby improve outcomes for patients with BRAFV600E gliomas.
منابع مشابه
BRAF Fusion as a Novel Mechanism of Acquired Resistance to Vemurafenib in BRAFV600E Mutant Melanoma.
Purpose: Many patients with BRAFV600E mutant melanoma treated with BRAF inhibitors experience a rapid response, but ultimately develop resistance. Insight into the mechanism of resistance is critical for development of more effective treatment strategies.Experimental Design: Comprehensive genomic profiling of serial biopsies was performed in a patient with a BRAFV600E mutant metastatic melanoma...
متن کاملTrametinib after disease reactivation under dabrafenib in Erdheim-Chester disease with both BRAF and KRAS mutations.
Major advances have been made in understanding the pathogenesis of Erdheim-Chester disease (ECD) leading to novel treatment strategies. Targeted therapies such as BRAF inhibition have shown a significant impact on disease management, emphasizing the importance of the activated mitogen-associated protein kinase pathway in this disease. However, incomplete responsiveness, potentially limiting adv...
متن کاملMAPK pathway inhibition induces MET and GAB1 levels, priming BRAF mutant melanoma for rescue by hepatocyte growth factor
Therapeutic resistance is a major obstacle to achieving durable clinical responses with targeted therapies, highlighting a need to elucidate the underlying mechanisms responsible for resistance and identify strategies to overcome this challenge. An emerging body of data implicates the tyrosine kinase MET in mediating resistance to BRAF inhibitors in BRAFV600E mutant melanoma. In this study we o...
متن کاملMitochondrial oxidative stress is the achille's heel of melanoma cells resistant to Braf-mutant inhibitor
Vemurafenib/PLX4032, a selective inhibitor of mutant BRAFV600E, constitutes a paradigm shift in melanoma therapy. Unfortunately, acquired resistance, which unavoidably occurs, represents one major limitation to clinical responses. Recent studies have highlighted that vemurafenib activated oxidative metabolism in BRAFV600E melanomas expressing PGC1α. However, the oxidative state of melanoma resi...
متن کاملBRAF Status in Personalizing Treatment Approaches for Pediatric Gliomas.
PURPOSE Alteration of the BRAF/MEK/MAPK pathway is the hallmark of pediatric low-grade gliomas (PLGGs), and mTOR activation has been documented in the majority of these tumors. We investigated combinations of MEK1/2, BRAFV600E and mTOR inhibitors in gliomas carrying specific genetic alterations of the MAPK pathway. EXPERIMENTAL DESIGN We used human glioma lines containing BRAFV600E (adult hig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017